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Abstract
Games have been intertwined with the field of computer science almost from it’s

inception. Babbage explored building an AI for tic-tac-toe [1], and both Turing[2]
and Shannon[3] developed programs to play chess.

As the power of computers has increased, more and more games have been solved
by computers. Checkers by Chinkook, chess with Deep Blue, Jeopardy with

Watson. More recently, deep learning has been used to accelerate this progress.
The Deep Q-learning algorithm [4–6] has been used to play a large variety of Atari
2600 games with very little game-specific knowledge, only requiring a specification

of the actions that can be taken, the screen pixels, and the score at each frame.
This thesis includes a report of the implementation of this algorithm, as well as an

analysis into the results.
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Chapter 1

Introduction

This project is a primarily a replication study based on two papers by Mnih et al. [4,
5]. The first introduces the deep Q-network, and the second takes it further, runs
it on more Atari 2600 games and provides more analysis into the internals of the
learning process.

The aim of this project is firstly to replicate, and potentially improve, on the
results attained by Mnih et al. [4, 5]. Secondly it is to provide a thorough analysis
into the emergent behaviours that arise from this learning technique.

1.1 Outline
Chapter 1 introduces the topic and defines what this thesis will explore.

Chapter 2 analyses the background of the topic area. It explains what deep
learning and Q-learning is, as well as the combination. The challenges and potential
solutions are also outlined.

Chapter 3 describes the details the implementation – the challenges, pitfalls, and
limitations encountered, and how they were overcome.

Chapter 4 contains the analysis of the implementation. Each Atari game is
evaluated, and tests are presented in order to back up different hypotheses.

Chapter 5 summarizes the thesis, with suggestions on future work.
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Chapter 2

Background

One of the main papers that this thesis is based on is a paper by Google DeepMind
[5]. The authors combine traditional Q-learning with neural networks to create
a deep Q-network that is able to play Atari 2600 games with little game-specific
knowledge. They test 49 different games on the system, of which 22 can be played
at an above-human level.

The key idea is the generality of the technique — it is the same algorithm that is
applied to each game, with the same hyperparameters — rather than the individual
scores on each game. More optimal algorithms can be found for each individual
game, however this method is trying to find the optimal algorithm for any game.

The Arcade Learning Environment (ALE), is used to simulate the Atari 2600 [7].
Internally this uses the Stella emulator, which can run Atari games on the order of
thousands of frames per second (FPS), compared to 60 FPS that the game is played
at.

In this section the background of Q-learning and neural networks is described
and explained, to give a better foundation of understanding for the thesis itself.

2.1 Q-learning
In reinforcement learning (RL) an agent interacts with an environment through a
series of actions. For each action, the agent receives a reward which depends on
the environment’s state and the action taken. An overview is shown in Figure 2.1.
At each step the agent takes an action and receives an observation of the world
state and a reward signal. The objective of the agent is to maximize it’s cumulative
reward. As no domain-specific knowledge is given, the algorithm has to explore the
environment and learn from this.

Q-learning is an on-policy reinforcement learning algorithm that is proven to
converge to the optimal policy for an agent [8]. It is named after the function Q
that returns the value of an action in a specified state. This value is used as a
relative measure to compare different actions. It is defined in Equation (2.1).

Q(st, at) = rt + γ ·max
a

Q (st+1, a) (2.1)

The value of an action at in state st is equal to the reward rt that the agent
receives by taking this action, plus the value of the next state. The next state’s
value is calculated as the maximum potential value of Q, multiplied by a discount
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Chapter 2. Background 1. Q-learning

Figure 2.1: Reinforcement learning overview

factor γ. This is a hyperparameter, usually defined as 0.99, that forces Q to be
finite.

This recursive definition is converted into an iterative algorithm with the update
function given in Equation (2.2). Another hyperparameter, a learning rate α, is
used to determine how much the agent learns at each step. It can be thought of the
proportion of the old Q-value to forget.

Q(st, at)← (1− α) ·Q(st, at) + α ·
(
rt + γ ·max

a
Q (st+1, a)

)
(2.2)

An ε-greedy strategy is used to explore the state space, using this update func-
tion. The pseudocode is given in Algorithm 1. N is the number of steps for the
Q-learning algorithm to run. ε is a hyperparameter that controls the exploration-
exploitation trade-off. A value of 1 means that the agent is fully random (i.e.
continually exploring), and 0 means that the agent always chooses the action with
the maximum Q-value. This is usually set to ≈ 0.1, or is sometimes a function of t.

Algorithm 1 Q-learning
1: s0 ← Initial state
2: for t← 1 to N do

3: at ←

{
random action, with probability ε

argmaxa Q(st, a), otherwise
4: Get next state st+1 and reward rt by taking action at in environment
5: Update Q: Q(st, at)← (1− α) ·Q(st, at) + α · (rt + γ ·maxa Q (st+1, a))
6: end for

In traditional Q-learning, Q is implemented as a table, with an entry for each
state-action pair. However, since video games have a large state space, Q is imple-
mented as a neural network. This improves computational performance, since the
network learns to generalize. This is further described in Section 2.4.
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Chapter 2. Background 2. Neural networks
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Figure 2.2: Example neural network

2.2 Neural networks
Neural networks can be viewed as a uniform way to approximate any given function.
If we know a set of inputs and outputs of an unknown function, a neural network
can be trained to represent that function that generated the data. This is a very
useful property to have in cases where the function cannot be easily formulated,
such as object recognition. They were introduced in 1958 and called perceptrons [9],
however only recently, helped by GPUs, has it become practical to train them to
solve real-world problems [10].

They have exploded in popularity recently, due to their recent successes in many
different areas such as image recognition, image generation, and AI development
[5, 11–14].

2.2.1 Forward propagation
Neural networks consist of a set of layers of size N . The input layer first, followed
by a number of hidden layers, and an output layer last. Each layer i has a width
li, which is the number of nodes in that layer, and an activation function φi. Each
node j (except those in the input layer) has a set of weights wi

j and a bias bij that it
uses to calculate the input zij to the activation function, defined in Equation (2.3).
An activation function φi is used to calculate the node’s activation aij, defined in
Equation (2.4). The size of wi

j is equal to the width of the previous layer, or li−1.
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Chapter 2. Background 2. Neural networks

The weight from the node k in layer i− 1 to the node j in the layer i is referenced
as wi

j,k. Figure 2.2 contains an example neural network, where N = 4, m1 = 2,
m2 = m3 = 3, and m4 = 1.

zij =

mi−1∑
k=1

wi
j,k · ai−1

k + bij (2.3)

aij = φi
(
zij
)

(2.4)

Forward propagation is the process of calculating the output from the input, i.e.
normal operation of a function. Node values are computed layer-by-layer, from the
first layer to the last layer, using Equations (2.3) and (2.4). GPUs can be used to
increase the performance of this process, as there are many independent nodes in
each layer of the network.

2.2.2 Activation functions
The activation function used in this thesis is the rectifier φ(x) = max(0, x).

It is used as opposed to the logistic sigmoid function φ(x) = 1
1+e−x , or it’s more

practical counterpart the hyperbolic tangent function φ(x) = tanh(x), as it has been
shown to improve training of neural networks [15].

2.2.3 Loss
In order to train the neural network to become better, a method of evaluating how
effective (or ineffective) the network is must be defined. A loss function L is defined
to encapsulate this. It takes two arguments: the expected (target) output x, and
the actual output y, and returns a real number that represents how "far off" the
network is from it’s target.

The loss function used in this thesis is the squared error between these two
values, multiplied by 1

2
to simplify the gradient calculation.

L(x, y) =
1

2
(x− y)2 (2.5)

2.2.4 Backpropagation
By adjusting the network’s parameters (weights and biases), L can be minimized.
This is achieved by using a process called gradient descent, which requires the dif-
ferential of the loss function L with respect to the parameter p, ∂L

∂p
. This is called

the gradient of the parameter p. Backpropagation is used to calculate each gradient.
Backpropagation, like forward propagation, calculates layer-by-layer, however,

unlike forward propagation, it performs this backwards, from the last layer to the
first. The general idea is to use the chain rule to calculate these gradients. Equa-
tion (2.6) shows an example of the chain rule. Here, v can be any variable.

∂L

∂p
=

∂L

∂v
· ∂v
∂p

(2.6)

The chain rule is used below, with Figure 2.3 to show that the gradient of each
weight (2.7) and bias (2.8) can be calculated from ∂L

∂aij
.

5



Chapter 2. Background 2. Neural networks

ai−1
k

aij

bij

wi
j,k

Figure 2.3: Example node

∂L

∂wi
j,k

=
∂L

∂aij
·
∂aij
∂wi

j,k

=
∂L

∂aij
· al−1

k (2.7)

∂L

∂bij
=

∂L

∂aij
·
∂aij
∂bij

=
∂L

∂aij
· 1 (2.8)

There are two cases for calculating ∂L
∂aij

. The first is for the output layer, when
i = N . This is the derivative of the loss function, in this case the derivative of
Equation (2.5).

∂L

∂aNj
=

∂

∂aNj

[
1

2

(
aNj − yj

)2]
= aNj − yj (2.9)

The other case is when the layer is a hidden layer. Equation (2.10) shows that
the gradient depends on the (i+ 1)th layer’s nodes’ gradients. This dependency
is why backpropagation has to be performed layer by layer from the output layer
backwards to the input layer.

∂L

∂aij
=

m(i+1)∑
k=1

∂L

∂ai+1
k

· ∂a
i+1
k

∂aij

=

m(i+1)∑
k=1

∂L

∂ai+1
k

· wi+1
k,j · φ

′ (zi+1
k

)
(2.10)

2.2.5 Stochastic gradient descent (SGD)
Gradient descent (GD) is the process by which a local minimum is found in a
loss landscape, using the gradients calculated above. A global minimum is not
guaranteed to be found, however in many practical tasks the local minimum is close
to the global minimum. Additionally, optimizers (see below) can be used to mitigate
this risk.

In normal GD, the whole training dataset is iterated through during an update,
however in stochastic gradient descent (SGD) a batch of values, of size Hb, are
sampled from the dataset to perform an update. This is necessary for large datasets,
such as those evaluated in this paper, as it would take too long to iterate through
the entire dataset (the entire replay buffer) each update. An explanation can be
found in [16].

6



Chapter 2. Background 2. Neural networks

Figure 2.4: The loss function landscape of f (x, y) = 1
2
x2 + 1

2
y2, with paths of

gradient descent with learning rates 0.1 and 2.1, both starting from (−5, 5)

At each SGD update, the parameters θ of the network are updated using Equa-
tion (2.11), where α is a learning rate, and ∂L

∂θ
are the gradients of the parameters.

θnew ← θ − α · ∂L
∂θ

(2.11)

This process is repeated a predetermined number of times, or until a condition
is set. The learning rate greatly affects how well the model will train. If the learning
rate is too small, the model may take an extremely large amount of time to converge,
conversely if it is too large it will never converge, and will spiral out of control.
Figure 2.4 depicts a learning rate that is too large (2.1), and a learning rate that is
just right (0.1).

Optimizers

An optimizer is a function that returns the new parameters of a network, given the
current parameters and their gradients. Equation (2.11) just one of many different
optimizers that are available. The Momentum optimizer keeps a momentum vector
v and updates it each frame using Equation (2.12). A hyperparameter η, usually
≈ 0.9, discounts it at each step, dampening the momentum. This is then used in
Equation (2.13) during SGD updates. This technique has been shown to increase
the rigidity of the training with respect to the learning rate, allowing a wider range
of learning rates to be used [16].

vt ← ηvt−1 + α · ∂L
∂θ

(2.12)

θnew ← θ − vt (2.13)

In this thesis the Adam optimizer is used, which is similar to the Momentum
optimizer. The Adam optimizer was introduced in [17]. Other than learning rate,

7



Chapter 2. Background 3. Convolutional neural networks (CNNs)
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Figure 2.5: Sobel kernel (horizontal) convolved with an image

the recommended hyperparameters defined in the paper are used, i.e. B1 = 0.9,
B2 = 0.999, and ε = 10−8. See Section 3.1.1 for the reasoning behind the decision
to use this optimizer.

2.3 Convolutional neural networks (CNNs)
CNNs are neural networks that have a convolutional layer in them. These layers
are well-suited for analysing images. In the simplest case, given an image u, and a
kernel k (n ×m matrix of numbers), the pixel at (x, y) in the resultant image v is
defined in Equation (2.14).

vx,y =
n∑
i

m∑
j

u
x+i−n

2
,y+j−m

2
· ki,j (2.14)

An example kernel and it’s result when convolved with an image is shown in
Figure 2.5. The human-crafted kernel performs edge detection for horizontal edges.
The kernels in a convolutional layer, however, are not human-crafted. Every value of
every kernel is a parameter to the network, and is optimized as the other parameters
are, using backpropagation (Section 2.2.4).

One of the reasons why convolution is successful with images is that there are
less parameters to adjust, as opposed to a fully-connected hidden layer, and this
helps the network to train. For example, in a 84× 84 image there are 7,056 pixels.
A dense layer of size 32 would mean 225,792 weights to train. A convolutional layer
with 32 kernels, each of size 8× 8, would only have 2,048 parameters. It also helps
the network generalize, as it encourages the network’s results to be invariant to
translations of the input image.

Stride

The stride of a convolutional layer is the distance between each filter. Above, the
stride is 1, however for an arbitrary stride s, Equation (2.15) is used.

vx,y =
n∑
i

m∑
j

u
sx+i−n

2
,sy+j−m

2
· ki,j (2.15)
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Chapter 2. Background 4. Deep Q-networks (DQNs)

2.4 Deep Q-networks (DQNs)
Deep Q-networks form the basis of this thesis. They were introduced in [4]. In this
paper, a network is created that learns how to play a multitude of Atari 2600 games.
The network learns to play Beam Rider, Breakout, Enduro, Pong, Q*bert, Seaquest
and Space Invaders. The AI for each game has the same network architecture and
hyperparameter settings, showing that the method generalizes to different games.
This was followed up with a paper in Nature [5] that is a more thorough study of
the method. In this paper they refine their method, and get an agent to achieve
human-level skill on 29 different Atari games.

Traditionally in Q-learning, Q is represented as a table. Each pair of states and
actions has an entry in the table, mapping to the expected reward. However, in
games with high state spaces, such as Atari games, this is computationally imprac-
tical. Every state that it memorized is unlikely to be seen again. To fill up the table
enough to generalize would take an excessive amount of time and memory.

In a DQN, however, a neural network with parameters θ tries to estimate the
function Q. The correct Q-value for state-action pairs is calculated through play,
using the method described in Section 2.1. The neural network then learns to
approximate Q given this data. In [5] two problems with this method are described,
and two solutions are proposed.

Firstly, the network does not perform well if the training data is fed in sequen-
tially, as the game is played. This is because the distribution of the data is not i.i.d,
i.e independent and identically distributed. In other words, the training data is not
a faithful representation of the function that we are trying to approximate. This
is a well-known issue with machine learning in general. Samples of training data
generated sequentially from play are highly correlated with each other - they are
not very independent.

In reinforcement learning, we also have the issue that both the training data and
the target Q are changing constantly, as we learn more about the environment. A
small change to Q can significantly change the policy, and hence the distribution
that the neural network is trying to learn. This means that the learning process is
constantly playing catch-up, trying to chase it’s own tail.

This paper attempts to mitigate these problems with two features. First, by
using a novel mechanism called experience replay. This reduces correlation in the
observation sequence, increasing independence of the input data. Instead of feeding
the observed data directly to the optimizer, the frames are stored in a buffer. Data
is sampled from this every number of steps and used to perform gradient descent.

Second, a separate network Q̂ with parameters θ̂ ← θ is created that is used for
generating the target Q-values for the original network to optimize to. This is called
the target network, with the network being trained called the model network. The
target parameters are set to the model parameters every Ht SGD updates.

2.4.1 Action repeat
At each step, the action chosen by the DQN algorithm is repeated for Hr frames. As
the majority of the time spent training is forward and backpropagation, this roughly
decreases the training time by a factor of Hr, without significantly decreasing agent
quality. This thesis explores the effect of changing this parameter. It also decreases

9



Chapter 2. Background 4. Deep Q-networks (DQNs)

Φ




⇒

Figure 2.6: Frame processing

the time to a reward, from the perspective of the network, and so increases training
speed further.

2.4.2 Frame processing
The frame of the Atari 2600 is 160x210x3 (RGB), however the frame passed to the
network is downsampled to 84x84 (greyscale). This is to reduce the computation
and memory requirements of the system. In addition the training time is reduced, as
it reduces the number of parameters in the neural network. This processing function
is referred to as Φ. Figure 2.6 demonstrates the conversion.

2.4.3 History stack
A stack of the Hh most recent frames are input to the agent, as it allows the agent
to observe and estimate velocity and acceleration of objects in the scene, and gives
greater context to draw from. For example, Figure 4.3a shows a frame from Break-
out, but it is impossible to tell which direction the ball is going in without some
other external information. A recurrent neural network doesn’t need this history
stack, as they can remember state internally, demonstrated in [18], however in this
thesis a simple DQN is used.

2.4.4 Reward clipping
During training rewards are clipped to be in the range [−1, 1]. This is so that the
same learning rate can be used for all games, as some games have rewards on a wildly
different scale. The problem is that this makes the agent weigh all rewards equally,
making the agent suboptimal in games like Pacman, where it is more optimal to get
cherries and chase ghosts than eat pellets. This video demonstrates the difference:
https://youtu.be/NBczahyJLNw. This problem was solved in [19] by estimating
the mean and variance of rewards, and compensating for it, however this was not
implemented due to time constraints.

10
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⇒

Figure 2.7: Max frame processing

2.4.5 Lives
When the player plays an Atari game, usually there are multiple lives, e.g. 3 lives
for Space Invaders, 5 for Star Gunner. It has been shown, however, that training is
faster if the agent only has 1 life. This is so that the agent learns that losing a life
is bad faster than it otherwise would.

Also, due to action repeat, not every frame is seen. This is a problem for some
games (like Asteroids), as objects are sometimes only rendered every odd or even
frame due to technical limitations of the Atari 2600. To fix this issue, each frame
passed to the network is actually the maximum of the previous frame and the current
frame. Figure 2.7 shows this process.

2.4.6 No-ops
To increase the randomness of games, a number of no-op actions (default action
that is the equivalent of the player pressing nothing) are taken whenever the game
is reset. This number is sampled from a uniform distribution in the range [0, Hn),
where Hn is a hyperparameter (Section 3.1.1).

2.4.7 ε-greedy policy
Since this algorithm uses a ε-greedy exploration policy, ε needs to be defined. In the
DQN paper, ε is linearly annealed from 1.0 to 0.1 over the first 1, 000, 000 frames.
In this thesis the same function is used, as defined in Equation (2.16). ε0, εT and T
are hyperparameters (Section 3.1.1).

εt =

{
εT + (ε0 − εT ) · t

T
, if t < T

εT otherwise
(2.16)

11
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2.4.8 Algorithm
Algorithm 2 outlines the Deep Q-learning algorithm described in [5]. N is the total
number of training steps. Hyperparameter (H) values are discussed in Section 3.1.1.

Algorithm 2 Deep Q-learning
1: Initialize replay buffer B with capacity Hs

2: Populate B with transitions by running a random agent for Hz steps
3: Initialize Q-value function Q with random parameters θ
4: Initialize target Q-value function Q̂ with parameters θ̂ = θ
5: for t← 1 to N do
6: if t = 1 or episode has terminated then
7: Initialize st to default state, τt
8: Initialize recent frame stack S with capacity Hh

9: n← a random number in the range [0, Hn]
10: Take no-op action n ·Hr times and update st and d . Section 2.4.6
11: end if

12: at ←

{
random action, with probability ε

argmaxa Q(st, a), otherwise
13: Take action at and repeat Hr times, calculating summed clipped reward rt

and set of frames F
14: Terminal τt+1 ← true if episode has ended, false otherwise
15: f ← max (Φ (FHr−1) ,Φ (FHr)) . Section 2.4.2
16: Store f in S
17: Get next state st+1 from S
18: Store transition tuple (st, at, rt, st+1) in B
19: if t mod Hu = 0 then . SGD update
20: Sample size Hb batch of transitions (sj, aj, rj, sj+1) from B

21: Set yj ←
{
rj, if episode terminates at step j + 1

rj + γmaxa Q̂
(
sj, a; θ̂

)
, otherwise

22: Perform gradient descent on the loss function L using yj as target
Q-values, i.e. minimize L using the gradient ∂

∂θ
L (yj, Q (sj, aj; θ))

23: end if
24: if t mod (Hu ·Ht) = 0 then . Target update
25: θ̂ ← θ
26: end if
27: end for
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Chapter 2. Background 5. Glossary

2.5 Glossary

Name Description
Episode Full playthrough of a game from the initial frame until the terminal

frame.
Epoch In this thesis an epoch is defined as 250,000, and has no meaning other

than as a shorthand.
Score The unclipped reward that is received from the emulator.
Reward The clipped reward that is received from the emulator. See Section 2.4.4

Table 2.1: Glossary
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Chapter 3

Implementation

One of the major challenges with this project was simply the amount of resources
that were required to train the agents. Before optimization, each agent took around
a day to train for 1,000,000 steps. With Google DeepMind’s hyperparameters, 7-
8GB of RAM is used. One of the major constraints was that the computer was
frequently running out of memory, interrupting training.

The majority of the memory usage was the replay buffer, for which Google used
a size of 1,000,000 frames. 84×84×1, 000, 000 = 7, 056, 000, 000bytes ≈ 7GB. Many
of the machines that were utilized in this study only had 8GB of RAM, and so it
didn’t take much to push the machine over the edge and for it to kill the process.
This is why the replay size in this thesis is 100,000, which uses around .7GB. This
change allows for around 8 games to be trained in parallel, before spurious out of
memory errors become more frequent.

The opaqueness of neural networks was also a challenge. Since neural networks
are essentially a black-box solution, it was difficult to track down bugs in the code.
The long training time further exacerbated this problem.

3.1 Training
There were four different sets of machines that I had at my disposal: my personal
computer with GPU, a Google Colab machine with GPU, and 8 machines with
GPUs and approximately 150 without GPUs in the computer science lab.

One of the problems with the lab machines was that occasionally training would
fail. The computer was inadvertently turned off by someone in the lab, it would run
out of memory, or the process would be killed.

The other problem was the limited quota, only 2200MiB. 1500MiB was taken up
by Python libraries, of which 1GiB was pytorch, and 319MiB by the CUDA DNN
library, leaving 381MiB for other data.

The solution to the first problem was saving the agent’s training state regularly
(consisting of the model Q, the replay buffer, and various other metadata). However,
this, as discussed above, is a large amount of data, much larger than 381MiB. A
solution to this was to save the agent’s state to a remote machine. In this case, it
was saved to Google Storage. Gzip compression was used to reduce the time spent
saving.

After these problems were solved, training was run in parallel on the lab ma-
chines, both with and without GPUs. This was accomplished by using a supervisor
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Chapter 3. Implementation 1. Training

Figure 3.1: Screenshot of the Google Cloud Storage web interface

program that, when assigned a set of agent specifications, would manage training
for those agents. It would keep track of which jobs were currently running, which
had just died, and which computers were off limits (i.e. which ones were in use
by other students). When restarting a training session, the supervisor would pass
arguments to the training program which would cause it to load the last saved state
from Google Storage.

Although the 150 lab machines without GPUs were much slower to train on, since
there were so many a large amount of agents could be trained in parallel. Even more
than 150 could be trained at once, due to the inherently single-threaded nature of
the deep Q-learning algorithm. Since each computer had a multiple core CPU, many
agents could be trained on the same machine without affecting performance. This
applied to the GPU machines as well, since the training was usually CPU limited,
and would only use ≈ 20% of the GPU during training.

One of the techniques that may be effective in this situation is the IMPALA
algorithm [20]. This is essentially a distributed version of deep Q-learning. It would
have been great in the labs, as it doesn’t even need GPUs to be fast. In fact,
the paper mentions that it runs better with a large amount of CPUS, the exact
environment of the computer science labs. Due to time constraints however, this
wasn’t implemented.

3.1.1 Hyperparameters
Table 3.1 shows the hyperparameters used in this thesis. For some tests the hyper-
parameters are different from the ones shown here, in which case it is noted. These
hyperparameters are similar to the ones in the Google DeepMind paper [5], however
there are differences.
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Chapter 3. Implementation 1. Training

Hyperparameter Value Description
Hh history length 4 See Section 2.4.3.
Hr action repeat 4 Each action the agent selects is re-

peated this many times. See Sec-
tion 2.4.1.

Hb batch size 32 Number of transitions that the net-
work is trained over during each
stochastic gradient descent (SGD) up-
date

Hs replay size 100,000 Maximum number of recent transi-
tions stored, to be sampled from dur-
ing SGD updates

Ht target update frequency 2,500 Number of SGD updates between
each target network update

Hu update frequency 4 Number of steps (action selections)
between each SGD update

γ discount 0.99 Discount factor used in Q-learning up-
date. See Section 2.1.

α learning rate 0.00001 Learning rate used by the Adam opti-
mizer

ε0 initial epsilon 1
See Section 2.4.7.εT final epsilon 0.01

T final epsilon step 1,000,000
Hz replay start size 50,000 A random agent is run for this number

of steps before training starts to pop-
ulate the replay memory with frames.

Hn no-op max 30 Max number of no-ops performed at
the start of every episode by the
agent. See Section 2.4.6.

Table 3.1: Hyperparameters

The hyperparameter differences include the replay size Hs, with the reasoning
mentioned above, the optimizer, the learning rate α, and the final epsilon value εT .

The optimizer used in [5] is the RMSProp optimizer, however in this thesis the
Adam optimizer is used instead. This is because the results of the paper could not
be replicated using the RMSProp optimizer. One of the simplest games on the Atari
2600, Pong, didn’t learn, even after 7,000,000 steps.

The learning rate was also changed, from 0.00025 to 0.00001, to increase the
training stability of agents. This may have been necessary because of the change in
optimizer. Tests of agents that were trained using both learning rates are presented
in Chapter 4.

An epsilon of 0.01 was chosen instead of 0.1 to increase the training speed of
the agent. The reasoning is that a 0.1 epsilon will cause the agent to miss 10% of
the actions that it tries to perform, causing the training to terminate early in some
long-term games where precision is needed.

For example, in the case of Breakout, an epsilon of 0.1 would mean that it would
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Chapter 3. Implementation 2. Visualizer

miss 10% of it’s shots. As it takes around 40 hits of the ball for it to penetrate behind
the wall of bricks, there would only be a (1− 0.1)40 ≈ 1.5% chance of reaching that
state. However, with an epsilon of 0.01, there would be a (1 − 0.01)40 ≈ 66.9%
chance of reaching that state. This is of course assuming that the agent has learnt
enough to be able to reach this point in the first place. Again, this is the problem
of exploration vs. exploitation.

3.1.2 Neural network architecture
The architecture of the neural network was chosen to be the same as in [5].

Shape Layer Parameters Description
Hh × 84× 84 Input – History stack of frames (Section 2.4.3)
32× 20× 20 Convolution 2,048h+ 32 32 filters of size 8× 8, with stride 4
— ” — ReLU – Rectifier nonlinearity activation func-

tion, as discussed in Section 2.2.2
64× 9× 9 Convolution 32,832 64 filters of size 4× 4, with stride 2
— ” — ReLU – –
64× 7× 7 Convolution 36,928 64 filters of size 3× 3, with stride 1
— ” — ReLU – –
512 Dense 1,606,144 Fully connected layer
— ” — ReLU – –
a Dense 512a+ 1 Outputs a Q-value for each action. a

is the action size hyperparameter, spe-
cific to each game.

Table 3.2: Neural network architecture

3.2 Visualizer
To demonstrate the DQN that was developed, a visualization system was imple-
mented. This was developed to be able to demonstrate the DQN running in real-
time, at 60 frames per second (FPS). This consists of two windows - the first a view
of the game state, and the second a view of the agent state.

Initially the live plot of the agent state was implemented using matplotlib, a
plotting library for Python. However, this became an issue due to it’s slow update
speed. To resolve this problem, the plot view was redeveloped using pyqtgraph,
resulting in an improvement from 4 FPS to 60 FPS. Another positive of pyqtgraph
was that the plots were interactive in real-time. The user can zoom in on portions
of the Q-values graph to gain a better understanding of what is happening, and save
the plot to a file if needs be.

Figure 3.2a shows the game state view during a game of Breakout. The unpro-
cessed current frame is shown in the top left, and the history of processed frames
that are input into the network are shown on the right, with the most recent frame
being at the top, until the Hhth frame at the bottom.

Figure 3.2b shows the agent state view. There are three graphs, displaying Q-
values in the short, medium and long term history respectively. The bar chart shows
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Chapter 3. Implementation 2. Visualizer

(a) Game state

(b) Agent state

Figure 3.2: Visualizer
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Chapter 3. Implementation 2. Visualizer

the short term – the Q-values for each action in the current state. The red bar is
the taken action, usually the highest, but sometimes not, due to ε. In this case, the
maximum Q-value is highlighted in green.

In the top-left is the medium term graph that displays the Q-values for every
action in the past 100 steps. The long term graph is in the top-right, and this shows
the Q-values for the entire episode. In this graph only the taken action’s Q-values
are shown, to reduce visual clutter. The green vertical lines shown are positive
rewards. Negative rewards are shown as red vertical lines.

Note that step in these plots is not referring to the number of frames, but the
number of update steps since the start of the episode. These are different because
of action repeat (Section 2.4.1).

These plots are used in Chapter 4 to provide context to the AI’s behaviours.

3.2.1 Controls
The visualizer state is controlled using the keyboard. A table of keys, along with
their use, is given in Table 3.3. Game keys can be held down together to take
multiple actions at once. A different number of game keys are supported depending
on the game.

Key(s) Description
<escape> or Q Quit
F Pause/resume
X Step frame (when paused): Steps the environment forward one

frame
C Step agent (when paused): Steps the environment to the next

DQN update. Different to stepping a frame due to action repeat
(Section 2.4.1).

T Double FPS (max 120)
G Half FPS (min 5)
U Toggle user-controlled mode

User Controlled Mode
<space> FIRE
<left> LEFT
<right> RIGHT
<up> UP
<down> DOWN

Table 3.3: Visualizer controls
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Chapter 4

Evaluation

This chapter first analyses in depth individual game behaviours that the AI has
learnt in Section 4.1, and then an overall evaluation is performed in Section 4.2,
using humans, random agents, and the Google DeepMind paper [5] as comparison.

4.1 AI behaviour analysis
In this section the notable emergent behaviours of the AI in a few different games
are analysed.

4.1.1 Pong
In Pong, the player is pitted against the game’s AI. The goal is to hit the ball past
the game AI’s paddle. Each time this happens, the player scores a point, and vice
versa for the AI. The first to 20 wins. Figure 4.1a shows an example frame from
the game. The game’s AI is on the left in orange, and the player is on the right in
green.

The built-in game AI is a simple one: it moves up if the puck is above its paddle,
and down if the puck is below its paddle. It cannot move as fast as the player though,
so the challenge is how responsive and accurate it is compared to the player.

Figure 4.1b shows the Q-values for each potential action that the player can take.
Note that the puck is moving down and to the right. The action that the AI has
selected (the action with the largest Q-value) is the LEFTFIRE action, a combined
action of LEFT and FIRE. In Pong, the LEFT input makes the player’s paddle go
down, and the FIRE button is used to accelerate the ball. If the player presses the
FIRE button when the puck hits the paddle, the ball gets a speed boost. The AI
has learned that this helps it to score points, as it is harder for the built-in AI to
defend against.

In this implementation, the first point scored is the hardest for the AI to complete
successfully. This is because the ball can be in a variety of different locations and
velocities, and so there is a larger state space to explore and learn. Once it has
scored however, the ball always appears in the same location. After this point, the
AI has learned to memorize a series of moves to perform to score consistently. The
trajectory of the ball is shown in Figure 4.2a, as well as the final location of the
built-in game AI’s paddle. This behaviour can also be seen in Figure 4.2b. The Q-
values before the first point is scored are much noisier than the rest of the Q-values,
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Chapter 4. Evaluation 1. AI behaviour analysis

(a) (b)

Figure 4.1: Sample Pong frame with action Q-values

(a) Pong ball
trajectory

(b) Maximum Q-value history

Figure 4.2: A typical game of Pong
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(a) (b)

Figure 4.3: Sample Breakout frame with action Q-values

which shows that the AI is much more unsure about the state that it is in.
Also, note the drop in Q-values just after a point has been scored. The AI has

learned to decrease its expectations when it recognises that a point has just been
scored, presumably by detecting that the ball has disappeared off of the leftmost
side of the screen.

4.1.2 Breakout
In Breakout the player controls a paddle to stop a ball from reaching the bottom of
the screen. If it reaches the bottom, the player loses a life. The player scores points
when the ball hits any of the bricks. The brick that was hit is also destroyed.

A sample frame of Breakout is given in Figure 4.3a, with each action’s Q-values
in Figure 4.3b. The ball is moving towards the bottom left of the screen. The Q-
values indicate that the agent is confident about being able to hit the ball without
moving (NOOP and FIRE), but it instead chooses to select the RIGHT action, as
it has a higher Q-value.

Figure 4.4 shows a typical game of Breakout, with labels at certain interesting
steps. (a) is the frame just before the reward is received from the ball hitting the
brick. On the Q-value graph, it is just before the predicted Q-value decreases. (b) is
the frame immediately after this. This shows that, to the AI, the expected reward
decreases just after it receives a reward. This makes intuitive sense, as the Q-values
up until this point have all had this reward factored into it.

At (c), step 605, the Q-values take a dive. The ball in this frame is moving
towards the bottom right. It appears to be this way because the AI is uncertain
about it’s ability to hit the ball back again.

Another behaviour to note occurs during the time marked by (g). The Q-values
increase dramatically from their usual baseline before this point. 5 rewards are
earned during this time frame. These 5 rewards are earned by the AI for breaking
the leftmost bricks to form a tunnel on the left hand side of the frame. The tunnel
can be seen in (d).

To explain this behaviour, another game mechanic of Breakout must be under-
stood. When the player manages to hit the 4th level of the wall, the ball’s speed
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(a) Step 30 (b) Step 31 (c) Step 605 (d) Step 1162 (e) Steps 1374+

(a)

(b) (c)

(d)

(e)
(g)

(f) Maximum Q-value history

Figure 4.4: A typical game of Breakout

increases. Since a higher ball speed leads to more frequent rewards, and the agent
needn’t worry about reaction times like a human, it explains why the Q-values in-
crease. The other reason could be that the tunnel is valuable in that it increases the
likelihood of a breakthrough scenario (as in (d)). It may be that it is a combination
of both.

The optimal strategy in Breakout is to hit the ball repeatedly in the same spot,
to create a tunnel through the wall, and then to get the ball through this behind
the wall. Once there, it can bounce around and destroy bricks without the player
needing to move the paddle to bounce it back again. We can see this in (d). This
is near the peak of the Q-value graph, and it shows that the AI has learnt that this
state, with the ball behind the wall, is a valuable state.

When this happens, the ball bounces around above the wall and gains reward
for the AI from each brick that is destroyed. As these bricks run out, the predicted
Q-values drop as well, showing that the AI learns to incorporate this information
into it’s decision on what Q-value to predict.

At the end of this episode, the AI gets stuck in a loop, shown in (e). The AI
alternates between the left and right position, continually hitting the ball along the
red marked path. A heartbeat-like pattern is shown in the Q-values graph. This
occurs because the AI hasn’t learnt to avoid this situation. This may be simply
because the AI hasn’t had enough training to avoid this yet. This behaviour might
also be avoided by using RNNs [18].

4.1.3 Space Invaders
In Space Invaders the player controls a shooter at the bottom of the screen which can
fire at descending aliens. When they are hit the player scores points. An example
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(a) (b)

Figure 4.5: Sample Space Invaders frame with action Q-values

frame is shown in Figure 4.5a. It shows a frame where the shooter is just about to
be hit by an incoming projectile. The player must move to the left to get out of
the way to avoid losing a life. In Figure 4.5b the LEFT and LEFTFIRE have the
highest Q-values, showing that the AI has learnt this behaviour.

4.1.4 Atlantis
In this game the player defends against a wave of enemy spaceships that criss cross
the screen and slowly descend towards the titular Atlantis. Once the ships are on
the final layer, they can drop bombs that destroy the player’s guns. There are
three different guns at the start of the game, left, right and centre, corresponding to
LEFTFIRE, RIGHTFIRE, and FIRE. Each gun has a cooldown period after firing,
so it is sometimes advantageous to not fire at some points, so that the player can
fire later and hit a ship, as shown in Figure 4.6. The NOOP action is taken for steps
561-563, until at step 564 a bullet is fired. The small bullet can be seen in the next
step,ss 565, and more clearly in 566.

Figure 4.7a is taken just after a spaceship destroys the centre gun, at step 610.
This point is shown in Figure 4.7b to be one of the lowest Q-values reached by the
AI. A penalty is not given by the game – the AI doesn’t lose any score – however
it has learnt that this is a bad state in and of itself. It has learnt that, generally,
fewer rewards are earned in states where the centre gun is lost.

4.1.5 River Raid
In River Raid, the player controls a plane that flies along a river and blows objects
up. If the plane hits the side of the bank, the player loses a life. River Raid is
an example of a game with a high-dimensional action space: there are 18 discrete
actions that the agent can take in any given state. This increases the time taken to
train the agent.

Figure 4.8 shows a sample frame, and the Q-values of each action in this frame.
The agent has learnt that actions including RIGHT (highlighted in blue) in this
situation are bad actions, as they cause the ship to crash into the side of the bank,
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(a) Step 561 (b) Step 565 (c) Step 566 (d) Step 569: Ship
destroyed

(e) Q-values for all actions for steps 561-565

Figure 4.6: Relevant sequence from Atlantis

(a) Step 610

(a)

(b) Maximum Q-value history

Figure 4.7: An episode of Atlantis
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(a) (b)

Figure 4.8: Sample River Raid frame with action Q-values. Actions highlighted in
blue move right.

(a) (b)

Figure 4.9: Sample Star Gunner frame with maximum Q-value history

and cause the player to lose a life. In this situation the agent chooses to take the
UPLEFT action, away from the bank.

4.1.6 Star Gunner
Star Gunner, like River Raid, is a game with a high-dimensional action space, since
the agent can fly all around the screen. The aim, as with many Atari games, is to
shoot the enemies that appear on screen, and dodge the beams that are shot at it.

Shown in Figure 4.9 is a sample frame, and a graph of the maximum Q-value at
every step in the episode up until that point. Peaks of the Q-value can be seen just
before each reward, showing that the agent has learnt to recognise the increase in
expected reward. When playing, however, the agent has trouble recognising which
direction it is facing. It has learnt to navigate up and down to be on the same level
as enemies, but not to horizontally position it’s craft so that it faces them. This
may be because it has not had enough training to learn that it should do this. It
still eventually shoots and hits the enemies, since it is has a roughly 50-50 chance
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(a) Level 1 (b) Level 1 (c) Level 2 (d) Level 3 (e) Level 3 (f) Level 4

Figure 4.10: Sequence of frames from Bank Heist

of being in either direction. This shows that sometimes the agent will not learn the
optimal strategy, because it has already found a "good enough" strategy.

4.1.7 Bank Heist
In Bank Heist the player controls a getaway car that is used to rob banks, as the
name suggests. When robbed, the bank turns into a police car. Three of the four
passages on the side of the screen are wrap around passages, allowing the player
to get to the other side of the screen (Figures 4.10a,b). The upper right passage,
however, goes to the next level (Figures 4.10b,c). There are fours different levels, and
each time they are visited the banks respawn in the same place as before. The third
level is interesting as one of it’s banks is located near the upper right passageway
(Figure 4.10d). The levels loop around, i.e. the next level after the fourth is the first,
although the difficulty is increased. The time between robbing the bank and a police
car spawning is reduced, and the speed of the police cars is increased. Eventually it
becomes impossible to win, as the police car immediately spawns when the player
robs a bank, making the player lose a life.

Hence, the optimal strategy is to gain all the reward from the current level before
progressing to the next level. However, the agent doesn’t learn this long-term policy.
It will loop through this sequence (shown in Figure 4.10) again and again, eventually
losing due to crashing into a police car that spawns immediately after a robbery.
This shows the problem with the deep Q-learning algorithm - again it eschews the
optimal policy for a "good enough" policy. This is the problem of exploration vs
exploitation.

4.1.8 Fishing Derby
In Fishing Derby the player (on the left) is vs. the built-in game AI (on the right).
The aim of the game is to catch as many fish as possible without the shark eating
them on the way up.

Figure 4.11 shows a typical game of Fishing Derby, along with the maximum
Q-values for each step in the episode. It performs poorly, losing to the built-in AI
on average. However, in Google DeepMind’s paper, a human doesn’t do too well
either, only achieving a score difference of 5.5. Although it is bad at gaining rewards,
it can be shown that it has learnt to at least detect when it will lose reward, or in
other words, when the built-in game AI will gain points.
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(a) Step 370 (b) Step 621 (c) Step 622 (d) Step 660 (e) Step 678 (f) Step 698

(a)

(b)

(c)
(d)

(e)

(f)

(g) Maximum Q-value history

Figure 4.11: A typical episode of Fishing Derby

(a) (b) (c) (d) (e)

Figure 4.12: Sequence of frames from Montezuma’s Revenge

In this episode the agent gains some points early on, but then fails to achieve
any more than that. Around step 370 (a), the agent gets hopeful, and gets close to
catching a fish, but fails to do so. The more interesting sequence is (b-c). There
is a large, sudden increase in Q-values from step 621 (b) to step 622 (c). The only
difference between these two frames is the shark’s direction, showing that the agent
manages to pick up on the fact that the opponent’s fish is more likely to be eaten
by the shark in this situation.

Then slowly the Q-value decreases (d-f) as the agent predicts the opponent’s
point scoring as more and more likely.

4.1.9 Montezuma’s Revenge
Montezuma’s revenge is a difficult game to play due to its sparse rewards. This
means that the agent doesn’t have an external reward signal to learn from, and
so doesn’t know which action to take. It continually chooses essentially random
actions, since it cannot distinguish between them. This shows one of the main
problems with reinforcement learning: more intelligent systems of exploration need
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to be developed than a simply randomly taking actions until a reward is hit. As
the number of actions needed to gain a reward increases, the probability of success
decreases exponentially.

Figure 4.12 demonstrates the problem. The game starts at (a). The aim is to
get the key on the left. If the player just moves to the left or right though, they
fall and die. They must move down the ladder instead (b). Then, they must move
against the left-moving conveyor belt and walk the right, jump on a rope (c), jump
again to the right, climb down the ladder, jump over the skull (d), climb back up the
ladder (e) and jump to pick up the key. At any point if the player doesn’t complete
this correctly, they lose a life. This is such a long chain of events that it is extremely
unlikely to be happened upon by random exploration.

Some systems compensate for this by generating intrinsic rewards for states, to
guide the agent in the "right" direction. In [21] curiosity is rewarded, i.e. agents are
rewarded if their actions have unpredictable consequences. They test their method
in a sparsely rewarded 3D maze, where the only reward is reaching the end of the
maze.

One other potential method is by rewarding empowerment, i.e. rewarding states
that have higher future potential states [22]. That is outside the scope of this thesis,
however, due to time constraints.

4.2 Agent comparison
In this section the overall results of the implementation are presented and analysed.

A series of sets of deep Q-networks was developed for this thesis, each set with
different hyperparameters. Table 4.1 below describes the series.

Name Results Table Description
D1 Table 4.2 Uses default hyperparameters in Table 3.1.
D2 Table 4.3 εT = 0.1
D3 Table 4.4 Hs = 400,000, α = 0.00025
D4 Table 4.5 Hs = 200,000, α = 0.00025

Table 4.1: Summary of the sets of trained DQNs.

Every 250,000 training steps, each agent was run for 150,000 testing steps with
ε = 0.01, and the average episode score was calculated. The best testing performance
was then used to give an overall score achieved for each game. This score is recorded
in the results tables referenced above in Table 4.1.

For each game a random agent (agents with ε = 1) was run for 150,000 testing
steps and the average episode score was recorded. The human results were sourced
from [5]. The methodology of sourcing these human results are explained in [5].

A normalized score is calculated from each average episode score by using the
random agent’s score as a baseline from which to measure relative to the human’s
score, defined in Equation (4.1).

DQN score− random agent score
human score− random agent score (4.1)
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DeepMind defines an agent with a normalized score of ≥ 75% as having a com-
parable skill to a human for that game, and a normalized score of > 100% means the
agent has achieved superhuman performance. Conversely, a negative result implies
that the agent has achieved worse performance than simply random play.

D1 achieves superhuman performance for 18 out of the 49 games (Table 4.2),
a worse result than in [5] – in that paper agents managed to achieve superhuman
performance in 23 games. This could potentially be because the DQNs in this thesis
have not been trained for as long as in [5]. In that paper they are all trained for
50,000,000 steps, whereas the longest a model has been trained in this thesis is
7,000,000 steps, due to time constraints.

In Figure 4.15 the average episode rewards for each game during the training of
D1 are shown, and many of them are on an upward trajectory. For example – Alien,
Amidar, Assault, Asterix, Atlantis, Bank Heist, Beam Rider, Boxing, Breakout,
Chopper Command, Demon Attack, Enduro, Fishing Derby (albeit slowly), Gopher,
Kangaroo, Ms. Pacman, Name This Game, River Raid, Road Runner, Robotank,
Space Invaders, Star Gunner, and Tutankham. 23 games, with 12 of those being of
below human performance.

However, it could also be because the values of the hyperparameters are not
optimal. Three more sets of deep Q-networks were developed to test this hypothesis:
D2, D3 and D4. Table 4.1 shows what the hyperparameters for each were, and which
table the results are located in.

4.2.1 Google DeepMind comparison
Table 4.6 contains a comparison of this thesis’ DQN results to Google DeepMind’s
results. The best performing network Di is selected for each game and compared
to Google’s DQN using a similar normalization method used for comparing DQN
results to human results, defined in Equation 4.2.

Thesis DQN score− random agent score
Google DeepMind DQN score− random agent score (4.2)

The main result from the table is that this thesis’ DQN’s outperformed the
Google DeepMind’s DQN in 16 different games, with much fewer training steps.
With more training steps, potentially each score in each game could be improved
upon.

The fairly uniform spread of thesis DQNs suggests that there is no optimal
hyperparameter set for all games. Each agent complements each other. This suggests
that evolutionary algorithms with multiple agents with differing hyperparameters
will be more successful than a lone agent. Due to the high computational cost
however, this was impractical to explore in this thesis. In [12] the authors explore
this multi-agent learning idea in order to generate agents that can play a 3D capture
the flag game based on Quake 3.

As shown in Figure 4.13, this overall method produces one more superhuman
agent and one more human-level agent – D3 on Atlantis, and D4 on Up and Down.
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Game Random Human DQN
Score

Normalized
DQN Score
(% Human)

Training
Steps

(1,000s)

Alien 203.6 6,875 1,284.2 16.2 % 6,250
Amidar 3.2 1,676 183.4 10.8 % 6,250
Assault 248.3 1,496 2,890.2 211.7 % 7,000
Asterix 229.9 8,503 2,492.8 27.4 % 7,000
Asteroids 833.2 13,157 801.9 -0.3 % 6,250
Atlantis 16,990.4 29,028 13,726.2 -27.1 % 6,750
Bank Heist 13.7 734.4 656.4 89.2 % 6,750
Battle Zone 2,720.3 37,800 18,838.7 45.9 % 6,500
Beam Rider 377.2 5,775 3,448.3 56.9 % 6,750
Bowling 23.7 154.8 25.5 1.4 % 6,500
Boxing 0.5 4.3 86.5 2,284.8 % 6,250
Breakout 1.4 31.8 123.7 401.8 % 6,250
Centipede 2,280.7 11,963 3,501.2 12.6 % 6,500
Chopper Command 819.4 9,882 1,827.1 11.1 % 6,500
Crazy Climber 6,832.1 35,411 80,418.4 257.5 % 7,000
Demon Attack 173.4 3,401 11,188.2 341.3 % 6,750
Double Dunk -18.5 -15.5 -17.6 29.5 % 6,250
Enduro 0 309.6 1,114.7 360 % 6,250
Fishing Derby -93.9 5.5 -79.9 14.1 % 6,000
Freeway 0 29.6 31.8 107.3 % 6,000
Frostbite 70.8 4,335 295.5 5.3 % 4,000
Gopher 310.1 2,321 2,825.1 125.1 % 4,000
Gravitar 218 2,672 170.9 -1.9 % 4,500
H.E.R.O 441.1 25,763 3,313.6 11.3 % 5,000
Ice Hockey -10.2 0.9 -6.8 30.7 % 4,750
James Bond 30.5 406.7 451 111.8 % 4,500
Kangaroo 51.4 3,035 5,446.6 180.8 % 5,250
Krull 1,598.3 2,395 2,409.7 101.8 % 4,750
Kung-Fu Master 444.5 22,736 27,979.6 123.5 % 5,500
Montezuma’s Revenge 0 4,367 0 0 % 4,250
Ms. Pacman 253.1 15,693 1,238.2 6.4 % 4,000
Name This Game 2,250.3 4,076 8,138.6 322.5 % 4,250
Pong -20.3 9.3 16.5 124.3 % 4,250
Private Eye 34.5 69,571 100 0.1 % 4,250
Q*bert 161.1 13,455 754.7 4.5 % 4,000
River Raid 1,484.4 13,513 2,887.7 11.7 % 4,250
Road Runner 12.2 7,845 15,127.4 193 % 3,500
Robotank 2.2 11.9 14.4 125.8 % 3,500
Seaquest 76.7 20,182 1,507.9 7.1 % 4,250
Space Invaders 156.2 1,652 362.8 13.8 % 4,000
Star Gunner 646.6 10,250 2,039.5 14.5 % 4,250
Tennis -23.9 -8.9 -22.2 10.8 % 3,250
Time Pilot 3,820.7 5,925 4,386.7 26.9 % 5,250
Tutankham 10.4 167.6 191.5 115.2 % 3,250
Up and Down 464.2 9,082 5,600.3 59.6 % 2,500
Venture 0 1,188 52.9 4.5 % 3,750
Video Pinball 16,582.3 17,298 25,517.9 1,248.5 % 2,750
Wizard of Wor 672.5 4,757 1,411.8 18.1 % 3,250
Zaxxon 2.4 9,173 3,310 36.1 % 2,000

Table 4.2: D1 results. Trained with hyperparameters in Table 3.1. Random agents are agents
with ε = 1. Human scores sourced from the Google DeepMind paper [5]. The penultimate

column is the normalized score of the DQN, calculated using Equation (4.1), and expressed as a
percentage. Negative results mean the DQN performed worse than a random agent.
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Game Random Human DQN
Score

Normalized
DQN Score
(% Human)

Training
Steps

(1,000s)

Alien 203.6 6,875 593.2 5.8 % 3,500
Amidar 3.2 1,676 107.2 6.2 % 3,750
Assault 248.3 1,496 2,749.9 200.5 % 3,750
Asterix 229.9 8,503 1,820.3 19.2 % 3,500
Asteroids 833.2 13,157 788.9 -0.4 % 3,500
Atlantis 16,990.4 29,028 13,626.2 -27.9 % 2,500
Bank Heist 13.7 734.4 385.2 51.5 % 4,500
Battle Zone 2,720.3 37,800 27,177.8 69.7 % 2,250
Beam Rider 377.2 5,775 1,234.5 15.9 % 2,500
Bowling 23.7 154.8 16.6 -5.3 % 3,750
Boxing 0.5 4.3 87 2,295.9 % 2,250
Breakout 1.4 31.8 29.5 92.3 % 2,500
Centipede 2,280.7 11,963 3,279 10.3 % 4,000
Chopper Command 819.4 9,882 1,191.1 4.1 % 2,500
Crazy Climber 6,832.1 35,411 80,730.6 258.6 % 1,250
Demon Attack 173.4 3,401 4,198.8 124.7 % 2,500
Double Dunk -18.5 -15.5 -16.5 67.6 % 3,250
Enduro 0 309.6 814.5 263.1 % 4,000
Fishing Derby -93.9 5.5 -61.9 32.2 % 3,500
Freeway 0 29.6 27.5 92.9 % 2,250
Frostbite 70.8 4,335 240 4 % 3,500
Gopher 310.1 2,321 550.9 12 % 4,500
Gravitar 218 2,672 137.3 -3.3 % 2,250
H.E.R.O 441.1 25,763 2,530.1 8.2 % 3,750
Ice Hockey -10.2 0.9 -9.4 7.6 % 4,250
James Bond 30.5 406.7 261.2 61.3 % 4,500
Kangaroo 51.4 3,035 2,586.5 85 % 3,750
Krull 1,598.3 2,395 1,948.9 44 % 3,250
Kung-Fu Master 444.5 22,736 21,166.7 93 % 3,500
Montezuma’s Revenge 0 4,367 0 0 % 4,000
Ms. Pacman 253.1 15,693 1,160.6 5.9 % 3,750
Name This Game 2,250.3 4,076 5,950 202.6 % 3,750
Pong -20.3 9.3 -7.2 44.3 % 2,500
Private Eye 34.5 69,571 0 -0 % 3,500
Q*bert 161.1 13,455 619.8 3.5 % 3,000
River Raid 1,484.4 13,513 2,364 7.3 % 2,250
Road Runner 12.2 7,845 16,339.1 208.4 % 3,500
Robotank 2.2 11.9 13.8 119.4 % 3,250
Seaquest 76.7 20,182 1,538.6 7.3 % 2,500
Space Invaders 156.2 1,652 457.7 20.2 % 3,750
Star Gunner 646.6 10,250 1,757.6 11.6 % 4,000
Tennis -23.9 -8.9 -22.2 11.2 % 3,500
Time Pilot 3,820.7 5,925 1,915.2 -90.6 % 3,250
Tutankham 10.4 167.6 192.2 115.6 % 4,000
Up and Down 464.2 9,082 5,990.4 64.1 % 3,250
Venture 0 1,188 0 0 % 3,250
Video Pinball 16,582.3 17,298 19,110.9 353.3 % 2,250
Wizard of Wor 672.5 4,757 1,063.6 9.6 % 3,000
Zaxxon 2.4 9,173 3,332.3 36.3 % 3,750

Table 4.3: D2 results. Trained with the hyperparameter εT = 0.1.
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Figure 4.13: Overall normalized score comparison

Game Random Human DQN
Score

Normalized
DQN Score
(% Human)

Training
Steps

(1,000s)

Assault 248.3 1,496 3,859.4 289.4 % 4,000
Atlantis 16,990.4 29,028 3,038,100 25,097.3 % 4,750
Battle Zone 2,720.3 37,800 16,058.8 38 % 4,750
Beam Rider 377.2 5,775 3,194 52.2 % 4,750
Boxing 0.5 4.3 -22.5 -610.7 % 5,250
Breakout 1.4 31.8 310 1,013.8 % 4,750
Chopper Command 819.4 9,882 994.9 1.9 % 5,500
Crazy Climber 6,832.1 35,411 66,730.8 209.6 % 4,000
Demon Attack 173.4 3,401 947.4 24 % 5,250
Freeway 0 29.6 22.5 75.9 % 4,000
Gravitar 218 2,672 173.4 -1.8 % 3,500
Pong -20.3 9.3 -20.9 -1.9 % 4,000
River Raid 1,484.4 13,513 1,116.1 -3.1 % 4,000
Seaquest 76.7 20,182 2,647 12.8 % 3,750
Space Invaders 156.2 1,652 694.7 36 % 2,500
Star Gunner 646.6 10,250 5,749.2 53.1 % 3,750
Video Pinball 16,582.3 17,298 228,552.9 29,617.8 % 3,500

Table 4.4: D3 results. Trained with replay size Hs = 400,000 and learning rate α = 0.00025.
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Game Random Human DQN
Score

Normalized
DQN Score
(% Human)

Training
Steps

(1,000s)

Alien 203.6 6,875 100.7 -1.5 % 5,250
Amidar 3.2 1,676 14.4 0.7 % 4,750
Assault 248.3 1,496 3,789.8 283.8 % 4,500
Asterix 229.9 8,503 3,024 33.8 % 3,750
Asteroids 833.2 13,157 546.7 -2.3 % 1,750
Atlantis 16,990.4 29,028 2,022.4 -124.3 % 6,000
Bank Heist 13.7 734.4 396.3 53.1 % 3,750
Battle Zone 2,720.3 37,800 5,477.9 7.9 % 4,000
Beam Rider 377.2 5,775 1,493 20.7 % 4,500
Bowling 23.7 154.8 7.5 -12.3 % 4,750
Boxing 0.5 4.3 -22.5 -613.2 % 6,000
Breakout 1.4 31.8 3.2 6.2 % 6,000
Centipede 2,280.7 11,963 2,817.8 5.5 % 4,500
Chopper Command 819.4 9,882 606.8 -2.3 % 5,500
Crazy Climber 6,832.1 35,411 77,412.5 247 % 4,750
Demon Attack 173.4 3,401 917.2 23 % 6,000
Double Dunk -18.5 -15.5 -21.1 -87.7 % 4,250
Enduro 0 309.6 24.7 8 % 6,500
Fishing Derby -93.9 5.5 -84.1 9.9 % 4,500
Freeway 0 29.6 22.1 74.8 % 5,250
Frostbite 70.8 4,335 260.4 4.4 % 3,000
Gopher 310.1 2,321 3,081 137.8 % 5,500
Gravitar 218 2,672 1.1 -8.8 % 2,000
H.E.R.O 441.1 25,763 6,197.2 22.7 % 3,750
Ice Hockey -10.2 0.9 -19.5 -83.7 % 3,500
James Bond 30.5 406.7 10 -5.5 % 5,750
Kangaroo 51.4 3,035 81 1 % 5,750
Krull 1,598.3 2,395 5,654.8 509.2 % 5,000
Kung-Fu Master 444.5 22,736 1.4 -2 % 5,500
Montezuma’s Revenge 0 4,367 0 0 % 750
Ms. Pacman 253.1 15,693 1,243.7 6.4 % 4,500
Name This Game 2,250.3 4,076 3,797.3 84.7 % 5,000
Pong -20.3 9.3 -21 -2.2 % 5,500
Private Eye 34.5 69,571 0 -0 % 1,750
Q*bert 161.1 13,455 4,239.7 30.7 % 4,250
River Raid 1,484.4 13,513 807.6 -5.6 % 4,250
Road Runner 12.2 7,845 21,433.3 273.5 % 5,000
Robotank 2.2 11.9 10.2 82.7 % 6,000
Seaquest 76.7 20,182 110.1 0.2 % 5,000
Space Invaders 156.2 1,652 653.6 33.3 % 4,750
Star Gunner 646.6 10,250 5,445.8 50 % 5,250
Tennis -23.9 -8.9 -23.6 1.6 % 5,750
Time Pilot 3,820.7 5,925 435.6 -160.9 % 4,250
Tutankham 10.4 167.6 4.8 -3.6 % 6,000
Up and Down 464.2 9,082 8,728.9 95.9 % 4,000
Venture 0 1,188 0 0 % 4,500
Video Pinball 16,582.3 17,298 160,346.3 20,087.5 % 5,000
Wizard of Wor 672.5 4,757 133.3 -13.2 % 4,500
Zaxxon 2.4 9,173 0 -0 % 4,250

Table 4.5: D4 results. rained with replay size Hs = 200,000, and learning rate α = 0.00025.
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Game DQN Google
DeepMind

DQN
Score

Thesis
DQN
Score

(Diff.) Normalized
DQN Score
(% Human)

Normalized DQN
Score (% Google

DeepMind DQN)

Alien D1 3,069 1,284.2 - 1,784.8 16.2 % 37.7 %
Amidar D1 739.5 183.4 - 556.1 10.8 % 24.5 %
Assault D3 3,359 3,859.4 + 500.4 289.4 % 116.1 %
Asterix D4 6,012 3,024 - 2,988 33.8 % 48.3 %
Asteroids D1 1,629 801.9 - 827.1 -0.3 % -3.9 %
Atlantis D3 85,641 3,038,100 + 2,952,459 25,097.3 % 4,400.7 %
Bank Heist D1 429.7 656.4 + 226.7 89.2 % 154.5 %
Battle Zone D2 26,300 27,177.8 + 877.8 69.7 % 103.7 %
Beam Rider D1 6,846 3,448.3 - 3,397.7 56.9 % 47.5 %
Bowling D1 42.4 25.5 - 16.9 1.4 % 9.8 %
Boxing D2 71.8 87 + 15.2 2,295.9 % 121.3 %
Breakout D3 401.2 310 - 91.2 1,013.8 % 77.2 %
Centipede D1 8,309 3,501.2 - 4,807.8 12.6 % 20.2 %
Chopper Command D1 6,687 1,827.1 - 4,859.9 11.1 % 17.2 %
Crazy Climber D2 114,103 80,730.6 - 33,372.4 258.6 % 68.9 %
Demon Attack D1 9,711 11,188.2 + 1,477.2 341.3 % 115.5 %
Double Dunk D2 -18.1 -16.5 + 1.6 67.6 % 507.4 %
Enduro D1 301.8 1,114.7 + 812.9 360 % 369.4 %
Fishing Derby D2 -0.8 -61.9 - 61.1 32.2 % 34.3 %
Freeway D1 30.3 31.8 + 1.5 107.3 % 104.8 %
Frostbite D1 328.3 295.5 - 32.8 5.3 % 87.3 %
Gopher D4 8,520 3,081 - 5,439 137.8 % 33.8 %
Gravitar D3 306.7 173.4 - 133.3 -1.8 % -50.3 %
H.E.R.O D4 19,950 6,197.2 - 13,752.8 22.7 % 29.5 %
Ice Hockey D1 -1.6 -6.8 - 5.2 30.7 % 39.7 %
James Bond D1 576.7 451 - 125.7 111.8 % 77 %
Kangaroo D1 6,740 5,446.6 - 1,293.4 180.8 % 80.7 %
Krull D4 3,805 5,654.8 + 1,849.8 509.2 % 183.8 %
Kung-Fu Master D1 23,270 27,979.6 + 4,709.6 123.5 % 120.6 %
Montezuma’s Revenge D4 0 0 + 0 0 % 0 %
Ms. Pacman D4 2,311 1,243.7 - 1,067.3 6.4 % 48.1 %
Name This Game D1 7,257 8,138.6 + 881.6 322.5 % 117.6 %
Pong D1 18.9 16.5 - 2.4 124.3 % 93.9 %
Private Eye D1 1,788 100 - 1,688 0.1 % 3.7 %
Q*bert D4 10,596 4,239.7 - 6,356.3 30.7 % 39.1 %
River Raid D1 8,316 2,887.7 - 5,428.3 11.7 % 20.5 %
Road Runner D4 18,257 21,433.3 + 3,176.3 273.5 % 117.4 %
Robotank D1 51.6 14.4 - 37.2 125.8 % 24.7 %
Seaquest D3 5,286 2,647 - 2,639 12.8 % 49.3 %
Space Invaders D3 1,976 694.7 - 1,281.3 36 % 29.6 %
Star Gunner D3 57,997 5,749.2 - 52,247.8 53.1 % 8.9 %
Tennis D2 -2.5 -22.2 - 19.7 11.2 % 7.9 %
Time Pilot D1 5,947 4,386.7 - 1,560.3 26.9 % 26.6 %
Tutankham D2 186.7 192.2 + 5.5 115.6 % 103.1 %
Up and Down D4 8,456 8,728.9 + 272.9 95.9 % 103.4 %
Venture D1 380 52.9 - 327.1 4.5 % 13.9 %
Video Pinball D3 42,684 228,552.9 + 185,868.9 29,617.8 % 812.1 %
Wizard of Wor D1 3,393 1,411.8 - 1,981.2 18.1 % 27.2 %
Zaxxon D2 4,977 3,332.3 - 1,644.7 36.3 % 66.9 %

Table 4.6: Comparison of average episode scores achieved in this thesis with scores achieved by
Google DeepMind [5]. For each game the best scoring thesis DQN (Di) is compared against

Google DeepMind’s DQN. The comparison is calculated using Equation (4.2), and is expressed as
a percentage. Negative results mean the DQN performed worse than a random agent.
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Figure 4.14: Average Q-values when training D1 for all games. Epoch is on the
X-axis, Q-values are on the Y-axis. At each point, the previous 50,000 Q-values

are used as an average.
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Figure 4.15: Average episode rewards when training D1 for all games. Epoch is on
the X-axis, clipped rewards are on the Y-axis (Section 2.4.4). Note that many of

these graphs have a positive trend, showing that potentially higher scores could be
achieved by continuing training.
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Chapter 5

Conclusion and future work

This thesis has attempted to replicate two papers by Mnih et al [4, 5]. The aim was
to replicate the results, but due to resource limitations a full replication of the paper
could not be achieved. However, partial replication of the paper has been achieved.
Even with limited resources success was achieved on a wide variety of games, even
surpassing Google in some games.

There were three main differences that prevented it being a full replication of
Google’s paper. There was a different optimizer (Google used RMSProp, this thesis
uses Adam), different replay size (100,000 vs 1,000,000), and a different number of
steps. (7,000,000 max vs 50,000,000).

If there was more time to test and train, a future study would train deep Q-
networks with a few different optimizers, and see the difference that makes to the
scores. A grid search could also be performed on the learning rate hyperparameter
to figure out the optimum value that can be achieved.

There are many potential directions from this to go in. Deep Q-learning forms
a base from which there have been many different tweaks and branches off of. For
example, IMPALA [20]. IMPALA is a scalable distributed algorithm for running
deep Q-learning with. Many different computers run simulations of the environment
(Atari 2600 or a different environment) and communicate their histories to a central
computer that stores their transitions in it’s internal replay buffer. This central
computer occasionally performs SGD using this data, just how the regular deep Q-
learning algorithm does, and sends the updated parameters of the policy network to
it’s clients. It has been shown to be much faster then single machine deep Q-learning,
and also, strangely, more stable. This is because it has a larger pool of observations
to draw from, and so has a more i.i.d dataset to train from (Section 2.4).

RNNs could also be investigated, as since they have a memory they could solve
more interesting games that require memory [18].
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Appendix A

Zip Instructions

All code is located in the git repo below.
https://git-teaching.cs.bham.ac.uk/mod-ug-proj-2018/cxt510

Inside the attached zip file there are a few Python script files, a requirements.txt file,
a ‘run_models.sh’ script, and a folder ‘model’ that contains a set of preset models
to use to play certain Atari 2600 games.

Before running the code, first you need to install the prerequisite Python libraries
by running ‘pip install -r requirements.txt’. pytorch may need to be installed sepa-
rately.
Once this is complete, run the ‘run_models.sh’ script to start playing. Controls are
below.

If on Windows, just copy and paste the commands out of the script file onto the
command line to run them.

Key(s) Description
<escape> or Q Quit
F Pause/resume
X Step frame (when paused): Steps the environment forward one

frame
C Step agent (when paused): Steps the environment to the next

DQN update. Different to stepping a frame due to action repeat
(Section 2.4.1).

T Double FPS (max 120)
G Half FPS (min 5)
U Toggle user-controlled mode

User Controlled Mode
<space> FIRE
<left> LEFT
<right> RIGHT
<up> UP
<down> DOWN

44

https://git-teaching.cs.bham.ac.uk/mod-ug-proj-2018/cxt510

	Abstract
	Aknowledgements
	Introduction
	Outline

	Background
	Q-learning
	Neural networks
	Forward propagation
	Activation functions
	Loss
	Backpropagation
	Stochastic gradient descent (SGD)

	Convolutional neural networks (CNNs)
	Deep Q-networks (DQNs)
	Action repeat
	Frame processing
	History stack
	Reward clipping
	Lives
	No-ops
	-greedy policy
	Algorithm

	Glossary

	Implementation
	Training
	Hyperparameters
	Neural network architecture

	Visualizer
	Controls


	Evaluation
	AI behaviour analysis
	Pong
	Breakout
	Space Invaders
	Atlantis
	River Raid
	Star Gunner
	Bank Heist
	Fishing Derby
	Montezuma's Revenge

	Agent comparison
	Google DeepMind comparison


	Conclusion and future work
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography
	Zip Instructions

